Implement ALSA volume support

This commit is contained in:
Michael Stapelberg 2010-07-20 19:30:27 +02:00
parent d8b6f03144
commit eb46963d4c
7 changed files with 719 additions and 3 deletions

View File

@ -3,7 +3,7 @@ CFLAGS+=-g
CFLAGS+=-std=gnu99 CFLAGS+=-std=gnu99
CFLAGS+=-pedantic CFLAGS+=-pedantic
CFLAGS+=-DPREFIX=\"\" CFLAGS+=-DPREFIX=\"\"
CFLAGS+=-I. CFLAGS+=-Iinclude
LDFLAGS+=-lconfuse LDFLAGS+=-lconfuse
VERSION=$(shell git describe --tags --abbrev=0) VERSION=$(shell git describe --tags --abbrev=0)
@ -11,7 +11,7 @@ VERSION=$(shell git describe --tags --abbrev=0)
ifeq ($(shell uname),Linux) ifeq ($(shell uname),Linux)
CFLAGS+=-DLINUX CFLAGS+=-DLINUX
CFLAGS+=-D_GNU_SOURCE CFLAGS+=-D_GNU_SOURCE
LDFLAGS+=-liw LDFLAGS+=-liw -lasound
endif endif
ifeq ($(shell uname),GNU/kFreeBSD) ifeq ($(shell uname),GNU/kFreeBSD)

2
debian/control vendored
View File

@ -3,7 +3,7 @@ Section: utils
Priority: extra Priority: extra
Maintainer: Michael Stapelberg <michael@stapelberg.de> Maintainer: Michael Stapelberg <michael@stapelberg.de>
DM-Upload-Allowed: yes DM-Upload-Allowed: yes
Build-Depends: debhelper (>= 5), libiw-dev [!kfreebsd-i386 !kfreebsd-amd64 !hurd-i386], libconfuse-dev, asciidoc, xmlto, libcap2-bin Build-Depends: debhelper (>= 5), libiw-dev [!kfreebsd-i386 !kfreebsd-amd64 !hurd-i386], libconfuse-dev, asciidoc, xmlto, libcap2-bin, libasound2-dev
Standards-Version: 3.8.4 Standards-Version: 3.8.4
Homepage: http://i3.zekjur.net/i3status Homepage: http://i3.zekjur.net/i3status

View File

@ -151,6 +151,14 @@ int main(int argc, char *argv[]) {
CFG_END() CFG_END()
}; };
cfg_opt_t volume_opts[] = {
CFG_STR("format", "♪: %volume", CFGF_NONE),
CFG_STR("device", "default", CFGF_NONE),
CFG_STR("mixer", "Master", CFGF_NONE),
CFG_INT("mixer_idx", 0, CFGF_NONE),
CFG_END()
};
cfg_opt_t opts[] = { cfg_opt_t opts[] = {
CFG_STR_LIST("order", "{ipv6,\"run_watch DHCP\",\"wireless wlan0\",\"ethernet eth0\",\"battery 0\",\"cpu_temperature 0\",load,time}", CFGF_NONE), CFG_STR_LIST("order", "{ipv6,\"run_watch DHCP\",\"wireless wlan0\",\"ethernet eth0\",\"battery 0\",\"cpu_temperature 0\",load,time}", CFGF_NONE),
CFG_SEC("general", general_opts, CFGF_NONE), CFG_SEC("general", general_opts, CFGF_NONE),
@ -160,6 +168,7 @@ int main(int argc, char *argv[]) {
CFG_SEC("battery", battery_opts, CFGF_TITLE | CFGF_MULTI), CFG_SEC("battery", battery_opts, CFGF_TITLE | CFGF_MULTI),
CFG_SEC("cpu_temperature", temp_opts, CFGF_TITLE | CFGF_MULTI), CFG_SEC("cpu_temperature", temp_opts, CFGF_TITLE | CFGF_MULTI),
CFG_SEC("disk", disk_opts, CFGF_TITLE | CFGF_MULTI), CFG_SEC("disk", disk_opts, CFGF_TITLE | CFGF_MULTI),
CFG_SEC("volume", volume_opts, CFGF_TITLE | CFGF_MULTI),
CFG_SEC("ipv6", ipv6_opts, CFGF_NONE), CFG_SEC("ipv6", ipv6_opts, CFGF_NONE),
CFG_SEC("time", time_opts, CFGF_NONE), CFG_SEC("time", time_opts, CFGF_NONE),
CFG_SEC("ddate", ddate_opts, CFGF_NONE), CFG_SEC("ddate", ddate_opts, CFGF_NONE),
@ -260,6 +269,12 @@ int main(int argc, char *argv[]) {
CASE_SEC("ddate") CASE_SEC("ddate")
print_ddate(cfg_getstr(sec, "format")); print_ddate(cfg_getstr(sec, "format"));
CASE_SEC("volume")
print_volume(cfg_getstr(sec, "format"),
cfg_getstr(sec, "device"),
cfg_getstr(sec, "mixer"),
cfg_getint(sec, "mixer_idx"));
CASE_SEC_TITLE("cpu_temperature") CASE_SEC_TITLE("cpu_temperature")
print_cpu_temperature_info(atoi(title), cfg_getstr(sec, "format")); print_cpu_temperature_info(atoi(title), cfg_getstr(sec, "format"));
} }

View File

@ -69,6 +69,7 @@ void print_run_watch(const char *title, const char *pidfile, const char *format)
void print_cpu_temperature_info(int zone, const char *format); void print_cpu_temperature_info(int zone, const char *format);
void print_eth_info(const char *interface, const char *format_up, const char *format_down); void print_eth_info(const char *interface, const char *format_up, const char *format_down);
void print_load(); void print_load();
void print_volume(const char *fmt, const char *device, const char *mixer, int mixer_idx);
bool process_runs(const char *path); bool process_runs(const char *path);
/* socket file descriptor for general purposes */ /* socket file descriptor for general purposes */

527
include/queue.h Normal file
View File

@ -0,0 +1,527 @@
/* $OpenBSD: queue.h,v 1.1 2007/10/26 03:14:08 niallo Exp $ */
/* $NetBSD: queue.h,v 1.11 1996/05/16 05:17:14 mycroft Exp $ */
/*
* Copyright (c) 1991, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)queue.h 8.5 (Berkeley) 8/20/94
*/
#ifndef _SYS_QUEUE_H_
#define _SYS_QUEUE_H_
/*
* This file defines five types of data structures: singly-linked lists,
* lists, simple queues, tail queues, and circular queues.
*
*
* A singly-linked list is headed by a single forward pointer. The elements
* are singly linked for minimum space and pointer manipulation overhead at
* the expense of O(n) removal for arbitrary elements. New elements can be
* added to the list after an existing element or at the head of the list.
* Elements being removed from the head of the list should use the explicit
* macro for this purpose for optimum efficiency. A singly-linked list may
* only be traversed in the forward direction. Singly-linked lists are ideal
* for applications with large datasets and few or no removals or for
* implementing a LIFO queue.
*
* A list is headed by a single forward pointer (or an array of forward
* pointers for a hash table header). The elements are doubly linked
* so that an arbitrary element can be removed without a need to
* traverse the list. New elements can be added to the list before
* or after an existing element or at the head of the list. A list
* may only be traversed in the forward direction.
*
* A simple queue is headed by a pair of pointers, one the head of the
* list and the other to the tail of the list. The elements are singly
* linked to save space, so elements can only be removed from the
* head of the list. New elements can be added to the list before or after
* an existing element, at the head of the list, or at the end of the
* list. A simple queue may only be traversed in the forward direction.
*
* A tail queue is headed by a pair of pointers, one to the head of the
* list and the other to the tail of the list. The elements are doubly
* linked so that an arbitrary element can be removed without a need to
* traverse the list. New elements can be added to the list before or
* after an existing element, at the head of the list, or at the end of
* the list. A tail queue may be traversed in either direction.
*
* A circle queue is headed by a pair of pointers, one to the head of the
* list and the other to the tail of the list. The elements are doubly
* linked so that an arbitrary element can be removed without a need to
* traverse the list. New elements can be added to the list before or after
* an existing element, at the head of the list, or at the end of the list.
* A circle queue may be traversed in either direction, but has a more
* complex end of list detection.
*
* For details on the use of these macros, see the queue(3) manual page.
*/
#if defined(QUEUE_MACRO_DEBUG) || (defined(_KERNEL) && defined(DIAGNOSTIC))
#define _Q_INVALIDATE(a) (a) = ((void *)-1)
#else
#define _Q_INVALIDATE(a)
#endif
/*
* Singly-linked List definitions.
*/
#define SLIST_HEAD(name, type) \
struct name { \
struct type *slh_first; /* first element */ \
}
#define SLIST_HEAD_INITIALIZER(head) \
{ NULL }
#define SLIST_ENTRY(type) \
struct { \
struct type *sle_next; /* next element */ \
}
/*
* Singly-linked List access methods.
*/
#define SLIST_FIRST(head) ((head)->slh_first)
#define SLIST_END(head) NULL
#define SLIST_EMPTY(head) (SLIST_FIRST(head) == SLIST_END(head))
#define SLIST_NEXT(elm, field) ((elm)->field.sle_next)
#define SLIST_FOREACH(var, head, field) \
for((var) = SLIST_FIRST(head); \
(var) != SLIST_END(head); \
(var) = SLIST_NEXT(var, field))
#define SLIST_FOREACH_PREVPTR(var, varp, head, field) \
for ((varp) = &SLIST_FIRST((head)); \
((var) = *(varp)) != SLIST_END(head); \
(varp) = &SLIST_NEXT((var), field))
/*
* Singly-linked List functions.
*/
#define SLIST_INIT(head) { \
SLIST_FIRST(head) = SLIST_END(head); \
}
#define SLIST_INSERT_AFTER(slistelm, elm, field) do { \
(elm)->field.sle_next = (slistelm)->field.sle_next; \
(slistelm)->field.sle_next = (elm); \
} while (0)
#define SLIST_INSERT_HEAD(head, elm, field) do { \
(elm)->field.sle_next = (head)->slh_first; \
(head)->slh_first = (elm); \
} while (0)
#define SLIST_REMOVE_NEXT(head, elm, field) do { \
(elm)->field.sle_next = (elm)->field.sle_next->field.sle_next; \
} while (0)
#define SLIST_REMOVE_HEAD(head, field) do { \
(head)->slh_first = (head)->slh_first->field.sle_next; \
} while (0)
#define SLIST_REMOVE(head, elm, type, field) do { \
if ((head)->slh_first == (elm)) { \
SLIST_REMOVE_HEAD((head), field); \
} else { \
struct type *curelm = (head)->slh_first; \
\
while (curelm->field.sle_next != (elm)) \
curelm = curelm->field.sle_next; \
curelm->field.sle_next = \
curelm->field.sle_next->field.sle_next; \
_Q_INVALIDATE((elm)->field.sle_next); \
} \
} while (0)
/*
* List definitions.
*/
#define LIST_HEAD(name, type) \
struct name { \
struct type *lh_first; /* first element */ \
}
#define LIST_HEAD_INITIALIZER(head) \
{ NULL }
#define LIST_ENTRY(type) \
struct { \
struct type *le_next; /* next element */ \
struct type **le_prev; /* address of previous next element */ \
}
/*
* List access methods
*/
#define LIST_FIRST(head) ((head)->lh_first)
#define LIST_END(head) NULL
#define LIST_EMPTY(head) (LIST_FIRST(head) == LIST_END(head))
#define LIST_NEXT(elm, field) ((elm)->field.le_next)
#define LIST_FOREACH(var, head, field) \
for((var) = LIST_FIRST(head); \
(var)!= LIST_END(head); \
(var) = LIST_NEXT(var, field))
/*
* List functions.
*/
#define LIST_INIT(head) do { \
LIST_FIRST(head) = LIST_END(head); \
} while (0)
#define LIST_INSERT_AFTER(listelm, elm, field) do { \
if (((elm)->field.le_next = (listelm)->field.le_next) != NULL) \
(listelm)->field.le_next->field.le_prev = \
&(elm)->field.le_next; \
(listelm)->field.le_next = (elm); \
(elm)->field.le_prev = &(listelm)->field.le_next; \
} while (0)
#define LIST_INSERT_BEFORE(listelm, elm, field) do { \
(elm)->field.le_prev = (listelm)->field.le_prev; \
(elm)->field.le_next = (listelm); \
*(listelm)->field.le_prev = (elm); \
(listelm)->field.le_prev = &(elm)->field.le_next; \
} while (0)
#define LIST_INSERT_HEAD(head, elm, field) do { \
if (((elm)->field.le_next = (head)->lh_first) != NULL) \
(head)->lh_first->field.le_prev = &(elm)->field.le_next;\
(head)->lh_first = (elm); \
(elm)->field.le_prev = &(head)->lh_first; \
} while (0)
#define LIST_REMOVE(elm, field) do { \
if ((elm)->field.le_next != NULL) \
(elm)->field.le_next->field.le_prev = \
(elm)->field.le_prev; \
*(elm)->field.le_prev = (elm)->field.le_next; \
_Q_INVALIDATE((elm)->field.le_prev); \
_Q_INVALIDATE((elm)->field.le_next); \
} while (0)
#define LIST_REPLACE(elm, elm2, field) do { \
if (((elm2)->field.le_next = (elm)->field.le_next) != NULL) \
(elm2)->field.le_next->field.le_prev = \
&(elm2)->field.le_next; \
(elm2)->field.le_prev = (elm)->field.le_prev; \
*(elm2)->field.le_prev = (elm2); \
_Q_INVALIDATE((elm)->field.le_prev); \
_Q_INVALIDATE((elm)->field.le_next); \
} while (0)
/*
* Simple queue definitions.
*/
#define SIMPLEQ_HEAD(name, type) \
struct name { \
struct type *sqh_first; /* first element */ \
struct type **sqh_last; /* addr of last next element */ \
}
#define SIMPLEQ_HEAD_INITIALIZER(head) \
{ NULL, &(head).sqh_first }
#define SIMPLEQ_ENTRY(type) \
struct { \
struct type *sqe_next; /* next element */ \
}
/*
* Simple queue access methods.
*/
#define SIMPLEQ_FIRST(head) ((head)->sqh_first)
#define SIMPLEQ_END(head) NULL
#define SIMPLEQ_EMPTY(head) (SIMPLEQ_FIRST(head) == SIMPLEQ_END(head))
#define SIMPLEQ_NEXT(elm, field) ((elm)->field.sqe_next)
#define SIMPLEQ_FOREACH(var, head, field) \
for((var) = SIMPLEQ_FIRST(head); \
(var) != SIMPLEQ_END(head); \
(var) = SIMPLEQ_NEXT(var, field))
/*
* Simple queue functions.
*/
#define SIMPLEQ_INIT(head) do { \
(head)->sqh_first = NULL; \
(head)->sqh_last = &(head)->sqh_first; \
} while (0)
#define SIMPLEQ_INSERT_HEAD(head, elm, field) do { \
if (((elm)->field.sqe_next = (head)->sqh_first) == NULL) \
(head)->sqh_last = &(elm)->field.sqe_next; \
(head)->sqh_first = (elm); \
} while (0)
#define SIMPLEQ_INSERT_TAIL(head, elm, field) do { \
(elm)->field.sqe_next = NULL; \
*(head)->sqh_last = (elm); \
(head)->sqh_last = &(elm)->field.sqe_next; \
} while (0)
#define SIMPLEQ_INSERT_AFTER(head, listelm, elm, field) do { \
if (((elm)->field.sqe_next = (listelm)->field.sqe_next) == NULL)\
(head)->sqh_last = &(elm)->field.sqe_next; \
(listelm)->field.sqe_next = (elm); \
} while (0)
#define SIMPLEQ_REMOVE_HEAD(head, field) do { \
if (((head)->sqh_first = (head)->sqh_first->field.sqe_next) == NULL) \
(head)->sqh_last = &(head)->sqh_first; \
} while (0)
/*
* Tail queue definitions.
*/
#define TAILQ_HEAD(name, type) \
struct name { \
struct type *tqh_first; /* first element */ \
struct type **tqh_last; /* addr of last next element */ \
}
#define TAILQ_HEAD_INITIALIZER(head) \
{ NULL, &(head).tqh_first }
#define TAILQ_ENTRY(type) \
struct { \
struct type *tqe_next; /* next element */ \
struct type **tqe_prev; /* address of previous next element */ \
}
/*
* tail queue access methods
*/
#define TAILQ_FIRST(head) ((head)->tqh_first)
#define TAILQ_END(head) NULL
#define TAILQ_NEXT(elm, field) ((elm)->field.tqe_next)
#define TAILQ_LAST(head, headname) \
(*(((struct headname *)((head)->tqh_last))->tqh_last))
/* XXX */
#define TAILQ_PREV(elm, headname, field) \
(*(((struct headname *)((elm)->field.tqe_prev))->tqh_last))
#define TAILQ_EMPTY(head) \
(TAILQ_FIRST(head) == TAILQ_END(head))
#define TAILQ_FOREACH(var, head, field) \
for((var) = TAILQ_FIRST(head); \
(var) != TAILQ_END(head); \
(var) = TAILQ_NEXT(var, field))
#define TAILQ_FOREACH_REVERSE(var, head, headname, field) \
for((var) = TAILQ_LAST(head, headname); \
(var) != TAILQ_END(head); \
(var) = TAILQ_PREV(var, headname, field))
/*
* Tail queue functions.
*/
#define TAILQ_INIT(head) do { \
(head)->tqh_first = NULL; \
(head)->tqh_last = &(head)->tqh_first; \
} while (0)
#define TAILQ_INSERT_HEAD(head, elm, field) do { \
if (((elm)->field.tqe_next = (head)->tqh_first) != NULL) \
(head)->tqh_first->field.tqe_prev = \
&(elm)->field.tqe_next; \
else \
(head)->tqh_last = &(elm)->field.tqe_next; \
(head)->tqh_first = (elm); \
(elm)->field.tqe_prev = &(head)->tqh_first; \
} while (0)
#define TAILQ_INSERT_TAIL(head, elm, field) do { \
(elm)->field.tqe_next = NULL; \
(elm)->field.tqe_prev = (head)->tqh_last; \
*(head)->tqh_last = (elm); \
(head)->tqh_last = &(elm)->field.tqe_next; \
} while (0)
#define TAILQ_INSERT_AFTER(head, listelm, elm, field) do { \
if (((elm)->field.tqe_next = (listelm)->field.tqe_next) != NULL)\
(elm)->field.tqe_next->field.tqe_prev = \
&(elm)->field.tqe_next; \
else \
(head)->tqh_last = &(elm)->field.tqe_next; \
(listelm)->field.tqe_next = (elm); \
(elm)->field.tqe_prev = &(listelm)->field.tqe_next; \
} while (0)
#define TAILQ_INSERT_BEFORE(listelm, elm, field) do { \
(elm)->field.tqe_prev = (listelm)->field.tqe_prev; \
(elm)->field.tqe_next = (listelm); \
*(listelm)->field.tqe_prev = (elm); \
(listelm)->field.tqe_prev = &(elm)->field.tqe_next; \
} while (0)
#define TAILQ_REMOVE(head, elm, field) do { \
if (((elm)->field.tqe_next) != NULL) \
(elm)->field.tqe_next->field.tqe_prev = \
(elm)->field.tqe_prev; \
else \
(head)->tqh_last = (elm)->field.tqe_prev; \
*(elm)->field.tqe_prev = (elm)->field.tqe_next; \
_Q_INVALIDATE((elm)->field.tqe_prev); \
_Q_INVALIDATE((elm)->field.tqe_next); \
} while (0)
#define TAILQ_REPLACE(head, elm, elm2, field) do { \
if (((elm2)->field.tqe_next = (elm)->field.tqe_next) != NULL) \
(elm2)->field.tqe_next->field.tqe_prev = \
&(elm2)->field.tqe_next; \
else \
(head)->tqh_last = &(elm2)->field.tqe_next; \
(elm2)->field.tqe_prev = (elm)->field.tqe_prev; \
*(elm2)->field.tqe_prev = (elm2); \
_Q_INVALIDATE((elm)->field.tqe_prev); \
_Q_INVALIDATE((elm)->field.tqe_next); \
} while (0)
/*
* Circular queue definitions.
*/
#define CIRCLEQ_HEAD(name, type) \
struct name { \
struct type *cqh_first; /* first element */ \
struct type *cqh_last; /* last element */ \
}
#define CIRCLEQ_HEAD_INITIALIZER(head) \
{ CIRCLEQ_END(&head), CIRCLEQ_END(&head) }
#define CIRCLEQ_ENTRY(type) \
struct { \
struct type *cqe_next; /* next element */ \
struct type *cqe_prev; /* previous element */ \
}
/*
* Circular queue access methods
*/
#define CIRCLEQ_FIRST(head) ((head)->cqh_first)
#define CIRCLEQ_LAST(head) ((head)->cqh_last)
#define CIRCLEQ_END(head) ((void *)(head))
#define CIRCLEQ_NEXT(elm, field) ((elm)->field.cqe_next)
#define CIRCLEQ_PREV(elm, field) ((elm)->field.cqe_prev)
#define CIRCLEQ_EMPTY(head) \
(CIRCLEQ_FIRST(head) == CIRCLEQ_END(head))
#define CIRCLEQ_FOREACH(var, head, field) \
for((var) = CIRCLEQ_FIRST(head); \
(var) != CIRCLEQ_END(head); \
(var) = CIRCLEQ_NEXT(var, field))
#define CIRCLEQ_FOREACH_REVERSE(var, head, field) \
for((var) = CIRCLEQ_LAST(head); \
(var) != CIRCLEQ_END(head); \
(var) = CIRCLEQ_PREV(var, field))
/*
* Circular queue functions.
*/
#define CIRCLEQ_INIT(head) do { \
(head)->cqh_first = CIRCLEQ_END(head); \
(head)->cqh_last = CIRCLEQ_END(head); \
} while (0)
#define CIRCLEQ_INSERT_AFTER(head, listelm, elm, field) do { \
(elm)->field.cqe_next = (listelm)->field.cqe_next; \
(elm)->field.cqe_prev = (listelm); \
if ((listelm)->field.cqe_next == CIRCLEQ_END(head)) \
(head)->cqh_last = (elm); \
else \
(listelm)->field.cqe_next->field.cqe_prev = (elm); \
(listelm)->field.cqe_next = (elm); \
} while (0)
#define CIRCLEQ_INSERT_BEFORE(head, listelm, elm, field) do { \
(elm)->field.cqe_next = (listelm); \
(elm)->field.cqe_prev = (listelm)->field.cqe_prev; \
if ((listelm)->field.cqe_prev == CIRCLEQ_END(head)) \
(head)->cqh_first = (elm); \
else \
(listelm)->field.cqe_prev->field.cqe_next = (elm); \
(listelm)->field.cqe_prev = (elm); \
} while (0)
#define CIRCLEQ_INSERT_HEAD(head, elm, field) do { \
(elm)->field.cqe_next = (head)->cqh_first; \
(elm)->field.cqe_prev = CIRCLEQ_END(head); \
if ((head)->cqh_last == CIRCLEQ_END(head)) \
(head)->cqh_last = (elm); \
else \
(head)->cqh_first->field.cqe_prev = (elm); \
(head)->cqh_first = (elm); \
} while (0)
#define CIRCLEQ_INSERT_TAIL(head, elm, field) do { \
(elm)->field.cqe_next = CIRCLEQ_END(head); \
(elm)->field.cqe_prev = (head)->cqh_last; \
if ((head)->cqh_first == CIRCLEQ_END(head)) \
(head)->cqh_first = (elm); \
else \
(head)->cqh_last->field.cqe_next = (elm); \
(head)->cqh_last = (elm); \
} while (0)
#define CIRCLEQ_REMOVE(head, elm, field) do { \
if ((elm)->field.cqe_next == CIRCLEQ_END(head)) \
(head)->cqh_last = (elm)->field.cqe_prev; \
else \
(elm)->field.cqe_next->field.cqe_prev = \
(elm)->field.cqe_prev; \
if ((elm)->field.cqe_prev == CIRCLEQ_END(head)) \
(head)->cqh_first = (elm)->field.cqe_next; \
else \
(elm)->field.cqe_prev->field.cqe_next = \
(elm)->field.cqe_next; \
_Q_INVALIDATE((elm)->field.cqe_prev); \
_Q_INVALIDATE((elm)->field.cqe_next); \
} while (0)
#define CIRCLEQ_REPLACE(head, elm, elm2, field) do { \
if (((elm2)->field.cqe_next = (elm)->field.cqe_next) == \
CIRCLEQ_END(head)) \
(head)->cqh_last = (elm2); \
else \
(elm2)->field.cqe_next->field.cqe_prev = (elm2); \
if (((elm2)->field.cqe_prev = (elm)->field.cqe_prev) == \
CIRCLEQ_END(head)) \
(head)->cqh_first = (elm2); \
else \
(elm2)->field.cqe_prev->field.cqe_next = (elm2); \
_Q_INVALIDATE((elm)->field.cqe_prev); \
_Q_INVALIDATE((elm)->field.cqe_next); \
} while (0)
#endif /* !_SYS_QUEUE_H_ */

View File

@ -220,6 +220,25 @@ details on the format string.
*Example format*: +%{%a, %b %d%}, %Y%N - %H+ *Example format*: +%{%a, %b %d%}, %Y%N - %H+
=== Volume
Outputs the volume of the specified mixer on the specified device. Works only
on Linux because it uses ALSA.
*Example order*: +volume master+
*Example format*: +♪: %volume+
*Example configuration*:
-------------------------------------------------------------
volume master {
format = "♪: %volume"
device = "default"
mixer = "Master"
mixer_idx = 0
}
-------------------------------------------------------------
== Using i3status with dzen2 == Using i3status with dzen2
After installing dzen2, you can directly use it with i3status: After installing dzen2, you can directly use it with i3status:

154
src/print_volume.c Normal file
View File

@ -0,0 +1,154 @@
// vim:ts=8:expandtab
#include <time.h>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#ifdef LINUX
#include <alsa/asoundlib.h>
#include <alloca.h>
#endif
#include "i3status.h"
#include "queue.h"
#ifdef LINUX
struct mixer_hdl {
char *device;
char *mixer;
int mixer_idx;
snd_mixer_selem_id_t *sid;
snd_mixer_t *m;
snd_mixer_elem_t *elem;
long min;
long max;
TAILQ_ENTRY(mixer_hdl) handles;
};
TAILQ_HEAD(handles_head, mixer_hdl) cached = TAILQ_HEAD_INITIALIZER(cached);
#endif
static void free_hdl(struct mixer_hdl *hdl) {
free(hdl->device);
free(hdl->mixer);
free(hdl);
}
void print_volume(const char *fmt, const char *device, const char *mixer, int mixer_idx) {
/* Printing volume only works with ALSA at the moment */
#ifndef LINUX
return;
#endif
/* Check if we already opened the mixer and get the handle
* from cache if so */
bool found = false;
int err;
struct mixer_hdl *hdl;
TAILQ_FOREACH(hdl, &cached, handles) {
if (strcmp(hdl->device, device) != 0 ||
strcmp(hdl->mixer, mixer) != 0 ||
hdl->mixer_idx != mixer_idx)
continue;
found = true;
break;
}
if (!found) {
if ((hdl = calloc(sizeof(struct mixer_hdl), 1)) == NULL)
return;
if ((hdl->device = strdup(device)) == NULL) {
free(hdl);
return;
}
if ((hdl->mixer = strdup(mixer)) == NULL) {
free(hdl->device);
free(hdl);
return;
}
hdl->mixer_idx = mixer_idx;
snd_mixer_selem_id_malloc(&(hdl->sid));
if (hdl->sid == NULL) {
free_hdl(hdl);
return;
}
if ((err = snd_mixer_open(&(hdl->m), 0)) < 0) {
fprintf(stderr, "ALSA: Cannot open mixer: %s\n", snd_strerror(err));
free_hdl(hdl);
return;
}
/* Attach this mixer handle to the given device */
if ((err = snd_mixer_attach(hdl->m, device)) < 0) {
fprintf(stderr, "ALSA: Cannot attach mixer to device: %s\n", snd_strerror(err));
snd_mixer_close(hdl->m);
free_hdl(hdl);
return;
}
/* Register this mixer */
if ((err = snd_mixer_selem_register(hdl->m, NULL, NULL)) < 0) {
fprintf(stderr, "ALSA: snd_mixer_selem_register: %s\n", snd_strerror(err));
snd_mixer_close(hdl->m);
free_hdl(hdl);
return;
}
if ((err = snd_mixer_load(hdl->m)) < 0) {
fprintf(stderr, "ALSA: snd_mixer_load: %s\n", snd_strerror(err));
snd_mixer_close(hdl->m);
free_hdl(hdl);
return;
}
/* Find the given mixer */
snd_mixer_selem_id_set_index(hdl->sid, mixer_idx);
snd_mixer_selem_id_set_name(hdl->sid, mixer);
if (!(hdl->elem = snd_mixer_find_selem(hdl->m, hdl->sid))) {
fprintf(stderr, "ALSA: Cannot find mixer %s (index %i)\n",
snd_mixer_selem_id_get_name(hdl->sid), snd_mixer_selem_id_get_index(hdl->sid));
snd_mixer_close(hdl->m);
free_hdl(hdl);
return;
}
/* Get the volume range to convert the volume later */
snd_mixer_selem_get_playback_volume_range(hdl->elem, &(hdl->min), &(hdl->max));
TAILQ_INSERT_TAIL(&cached, hdl, handles);
}
long val;
snd_mixer_handle_events (hdl->m);
snd_mixer_selem_get_playback_volume (hdl->elem, 0, &val);
int avg;
if (hdl->max != 100) {
float avgf = ((float)val / hdl->max) * 100;
avg = (int)avgf;
avg = (avgf - avg < 0.5 ? avg : (avg+1));
} else avg = (int)val;
/* Check for mute */
if (snd_mixer_selem_has_playback_switch(hdl->elem)) {
int pbval;
if ((err = snd_mixer_selem_get_playback_switch(hdl->elem, 0, &pbval)) < 0)
fprintf (stderr, "ALSA: playback_switch: %s\n", snd_strerror(err));
if (!pbval)
avg = 0;
}
const char *walk = fmt;
for (; *walk != '\0'; walk++) {
if (*walk != '%') {
putchar(*walk);
continue;
}
if (BEGINS_WITH(walk+1, "volume")) {
printf("%d%%", avg);
walk += strlen("volume");
}
}
}