qmk/tmk_core/common/chibios/eeprom.c
fredizzimo 4d4f7684e6 Add ChibiOS support for QMK (#465)
* Modularity and gcc warnings fixes.

* Add ChibiOS support (USB stack + support files).

* Make usb_main more USB_DRIVER #define independent.

* Move chibios to tool.

* Implement jump-to-bootloader.

* Small updates.

* Fix bootloader-jump compiling.

* Move AVR specific sleep_led.c into avr.

* Add basic sleep_led for chibios.

* Update chibios README.

* NKRO fixes.

* Rename some Makefile defines.

* Move STM32 bootloader address config to separate .h file.

* Add ARM Teensies bootloader code.

* Fix chibios/usb_main GET_REPORT handing.

* Add missing #include to keymap.c.

* Make bootmagic.c code portable (_delay_ms -> wait_ms).

* Move declaration of keymap_config.

Should really not declare variables in .h files - since it's included
in different .c files, a proper linker then complains that the same
variable is declared more than once (once for each .c file that the
offending .h is included in).

* Add eeprom support for chibios/kinetis.

* Rename chibios example keyboard.

* Move chibios/cortex selection to local Makefiles.

* Chibios: use WFI in idle. WIP suspend stuff.

* ChibiOS/kinetis: sending remote wakeup.

* ChibiOS/STM32: send remote wakeup.

* Fix report size of boot protocol.

* Fix drop key stroke

Keyboard report should be checked if its transfer finishs successfully.
Otherwise key stroke can be missing when other key event occurs
before the last report transfer is done.

Boot protocol 10ms interval probably causes this problem in case
it receives key events in a row within the period. NKRO protocol
suffers less or nothing due to its interval 1ms.

* Chibios/usb_main: rename a variable for clarity.

* Add correct chibios/bootloader_jump for infinity KB.

* ChibiOS: make reset request more CMSISy.

* Chibios: Add breathing sleep LED on Kinetis MCUs.

* ChibiOS: Update infinity bootloader code to match updated ChibiOS.

* ChibiOS: prettify/document sleep_led code.

* Chibios: Remove the wait in the main loop.

* Add maple mini code.

* Do timeout when writing to CONSOLE EP queue.

Fixes TMK bug #266.

* Chibios: add 'core/protocol' to the makefiles' search path.

* Chibios: Update to new USB API.

* Chibios: add more guards for transmitting (fix a deadlock bug).

* Add update for chibios in README

* Chibios: Fix a HardFault bug (wait after start).

* Chibios: cleanup usb_main code.

* Chibios: Revert common.mk change (fix AVR linking problem).

* core: Fix chibios user compile options

Compile options can be defined in project Makefile such as UDEFS, UADEFS, UINCDIR, ULIBDIR and ULIBS.

* Sysv format for ChibiOS arm-none-eabi-size

Some new patches to ChibiOS puts heap as it's own section. So the
berkeley format is now useless, as the heap will be included in the
BSS report. The sysv format displays the bss size correctly.

* Fix hard-coded path of CHIBIOS

* Add support for new version of ChibiOS and Contrib

The Kinetis support has moved to a separate Contrib repository in
the newest version of Chibios. There has also been some structure
changes. So this adds support for those, while maintaining back-
wards compability.

* Update ChibiOS instructions

* Chibios: implement sleep LED for STM32.

* Chibios: Update the main chibios README.

* Chibios: fix STM32_BOOTLOADER_ADDRESS name.

* Chibios: make the default bootloader_jump redefinable (weak).

* Chibios: disable LTO (link-time optimisation).

With LTO enabled, sometimes things fail for mysterious reasons
(e.g. bootloader jump on WF with LEDs enabled), just because the
linker optimisation is too aggressive.

* Chibios: add default location for chibios-contrib.

* ChibiOS: update mk to match chibios/master.

* ChibiOS: update instructions.md.

* Add chibi_onekey example.

* Add comments to chibi_onekey Makefile.

* Rename some Makefile defines.

* Move STM32 bootloader address config to separate .h file.

* Rename chibios example keyboard.

* Move chibios/cortex selection to local Makefiles.

* Add Teensy LC onekey example.

* Chibios: use WFI in idle. WIP suspend stuff.

* Update chibi/teensy instructions.

* Update chibios/Teensy instructions.

* Add infinity_chibios

* Add keymap_hasu.c

* Infinity_chibios: select correct bootloader_jump.

* Infinity_chibios: improve comments.

* Add generic STM32F103C8T6 example.

* Add maple mini code.

* STM32F103x fixes.

* Add maple mini pinout pic.

* Chibios: updates for 3.0.4 git.

* Chibios: rename example stm32_onekey -> stm32_f072_onekey.

* Chibios: add makefiles for Teensy 3.x examples.

* Chibios: update Teensy 3.x instructions.

* Chibios: Tsy LC is cortex-m0plus.

* Chibios: add more guards for transmitting (fix a deadlock bug).

* Change README for chibios

* Chibios: update examples to current chibios git.

Match the changes in mainline chibios:
 - update chconf.h
 - update supplied ld scripts structure
 - update Teensy instructions (switch to official
    chibios and introduce contrib)

* Add ChibiOS and ChibiOS-Contrib submodules

Also fix the makefile path for them.

* Moves chibios keyboards to keyboards folder

* First version of ChibiOS compilation

Only the stm32_f072_onkey keyboard is ported at the moment. It
compiles, but still doesn't link.

* More chibios fixes

It now compiles without warnings and links

* Move the teensy_lc_onekey to the keyboards folder

* Clean up the make file rule structure

* Remove keymap_fn_to_action

* Update more ChibiOS keyboards to QMK

Most of them does not compile at the moment though.

* Use older version of Chibios libraries

The newest ones have problems with compilation

* Remove USB_UNCONFIGURED event

It isn't present in the older version of ChibiOS

* Fix the infinity_chibios compilation

* Fix potentially uninitialized variable

* Add missing include

* Fix the ChibiOS makefile

* Fix some Chibios keyboard compilation

* Revert the rules.mk file back to master version

* Combine the chibios and AVR makefiles

With just the required overrides in the respective platform
specific one.

* Slight makefile restrucuring

Platform specific compiler options

* Move avr specific targets out of the main rules

* Fix ChibiOS objcopy

The ChibiOS objcopy needs different parameters, so the parameters
are moved to the corresponding platform rule file

* Fix the objcopy for real this time

The comands were moved around, so chibios used avr and the ohter
way around.

Also change the objsize output format

* Fix the thumb flags

* Fix the infinity hasu keymap

* Per platform cpp flags

* Add gcc-arm-none-eabi package to travis

* Add arm-none-eabi-newlib to travis

* Fix the name of the libnewlib-arm-none-eabi lib

* Fix the ChibiOS paths

So that they are properly relative, and builds don't generate
extra folders

* Fix the board path of stm32_f103_onekey

* Only consider folders with Makefiles as subproject
2016-07-01 10:04:53 -04:00

589 lines
16 KiB
C

#include "ch.h"
#include "hal.h"
#include "eeconfig.h"
/*************************************/
/* Hardware backend */
/* */
/* Code from PJRC/Teensyduino */
/*************************************/
/* Teensyduino Core Library
* http://www.pjrc.com/teensy/
* Copyright (c) 2013 PJRC.COM, LLC.
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* 1. The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* 2. If the Software is incorporated into a build system that allows
* selection among a list of target devices, then similar target
* devices manufactured by PJRC.COM must be included in the list of
* target devices and selectable in the same manner.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#if defined(K20x) /* chip selection */
/* Teensy 3.0, 3.1, 3.2; mchck; infinity keyboard */
// The EEPROM is really RAM with a hardware-based backup system to
// flash memory. Selecting a smaller size EEPROM allows more wear
// leveling, for higher write endurance. If you edit this file,
// set this to the smallest size your application can use. Also,
// due to Freescale's implementation, writing 16 or 32 bit words
// (aligned to 2 or 4 byte boundaries) has twice the endurance
// compared to writing 8 bit bytes.
//
#define EEPROM_SIZE 32
// Writing unaligned 16 or 32 bit data is handled automatically when
// this is defined, but at a cost of extra code size. Without this,
// any unaligned write will cause a hard fault exception! If you're
// absolutely sure all 16 and 32 bit writes will be aligned, you can
// remove the extra unnecessary code.
//
#define HANDLE_UNALIGNED_WRITES
// Minimum EEPROM Endurance
// ------------------------
#if (EEPROM_SIZE == 2048) // 35000 writes/byte or 70000 writes/word
#define EEESIZE 0x33
#elif (EEPROM_SIZE == 1024) // 75000 writes/byte or 150000 writes/word
#define EEESIZE 0x34
#elif (EEPROM_SIZE == 512) // 155000 writes/byte or 310000 writes/word
#define EEESIZE 0x35
#elif (EEPROM_SIZE == 256) // 315000 writes/byte or 630000 writes/word
#define EEESIZE 0x36
#elif (EEPROM_SIZE == 128) // 635000 writes/byte or 1270000 writes/word
#define EEESIZE 0x37
#elif (EEPROM_SIZE == 64) // 1275000 writes/byte or 2550000 writes/word
#define EEESIZE 0x38
#elif (EEPROM_SIZE == 32) // 2555000 writes/byte or 5110000 writes/word
#define EEESIZE 0x39
#endif
void eeprom_initialize(void)
{
uint32_t count=0;
uint16_t do_flash_cmd[] = {
0xf06f, 0x037f, 0x7003, 0x7803,
0xf013, 0x0f80, 0xd0fb, 0x4770};
uint8_t status;
if (FTFL->FCNFG & FTFL_FCNFG_RAMRDY) {
// FlexRAM is configured as traditional RAM
// We need to reconfigure for EEPROM usage
FTFL->FCCOB0 = 0x80; // PGMPART = Program Partition Command
FTFL->FCCOB4 = EEESIZE; // EEPROM Size
FTFL->FCCOB5 = 0x03; // 0K for Dataflash, 32K for EEPROM backup
__disable_irq();
// do_flash_cmd() must execute from RAM. Luckily the C syntax is simple...
(*((void (*)(volatile uint8_t *))((uint32_t)do_flash_cmd | 1)))(&(FTFL->FSTAT));
__enable_irq();
status = FTFL->FSTAT;
if (status & (FTFL_FSTAT_RDCOLERR|FTFL_FSTAT_ACCERR|FTFL_FSTAT_FPVIOL)) {
FTFL->FSTAT = (status & (FTFL_FSTAT_RDCOLERR|FTFL_FSTAT_ACCERR|FTFL_FSTAT_FPVIOL));
return; // error
}
}
// wait for eeprom to become ready (is this really necessary?)
while (!(FTFL->FCNFG & FTFL_FCNFG_EEERDY)) {
if (++count > 20000) break;
}
}
#define FlexRAM ((uint8_t *)0x14000000)
uint8_t eeprom_read_byte(const uint8_t *addr)
{
uint32_t offset = (uint32_t)addr;
if (offset >= EEPROM_SIZE) return 0;
if (!(FTFL->FCNFG & FTFL_FCNFG_EEERDY)) eeprom_initialize();
return FlexRAM[offset];
}
uint16_t eeprom_read_word(const uint16_t *addr)
{
uint32_t offset = (uint32_t)addr;
if (offset >= EEPROM_SIZE-1) return 0;
if (!(FTFL->FCNFG & FTFL_FCNFG_EEERDY)) eeprom_initialize();
return *(uint16_t *)(&FlexRAM[offset]);
}
uint32_t eeprom_read_dword(const uint32_t *addr)
{
uint32_t offset = (uint32_t)addr;
if (offset >= EEPROM_SIZE-3) return 0;
if (!(FTFL->FCNFG & FTFL_FCNFG_EEERDY)) eeprom_initialize();
return *(uint32_t *)(&FlexRAM[offset]);
}
void eeprom_read_block(void *buf, const void *addr, uint32_t len)
{
uint32_t offset = (uint32_t)addr;
uint8_t *dest = (uint8_t *)buf;
uint32_t end = offset + len;
if (!(FTFL->FCNFG & FTFL_FCNFG_EEERDY)) eeprom_initialize();
if (end > EEPROM_SIZE) end = EEPROM_SIZE;
while (offset < end) {
*dest++ = FlexRAM[offset++];
}
}
int eeprom_is_ready(void)
{
return (FTFL->FCNFG & FTFL_FCNFG_EEERDY) ? 1 : 0;
}
static void flexram_wait(void)
{
while (!(FTFL->FCNFG & FTFL_FCNFG_EEERDY)) {
// TODO: timeout
}
}
void eeprom_write_byte(uint8_t *addr, uint8_t value)
{
uint32_t offset = (uint32_t)addr;
if (offset >= EEPROM_SIZE) return;
if (!(FTFL->FCNFG & FTFL_FCNFG_EEERDY)) eeprom_initialize();
if (FlexRAM[offset] != value) {
FlexRAM[offset] = value;
flexram_wait();
}
}
void eeprom_write_word(uint16_t *addr, uint16_t value)
{
uint32_t offset = (uint32_t)addr;
if (offset >= EEPROM_SIZE-1) return;
if (!(FTFL->FCNFG & FTFL_FCNFG_EEERDY)) eeprom_initialize();
#ifdef HANDLE_UNALIGNED_WRITES
if ((offset & 1) == 0) {
#endif
if (*(uint16_t *)(&FlexRAM[offset]) != value) {
*(uint16_t *)(&FlexRAM[offset]) = value;
flexram_wait();
}
#ifdef HANDLE_UNALIGNED_WRITES
} else {
if (FlexRAM[offset] != value) {
FlexRAM[offset] = value;
flexram_wait();
}
if (FlexRAM[offset + 1] != (value >> 8)) {
FlexRAM[offset + 1] = value >> 8;
flexram_wait();
}
}
#endif
}
void eeprom_write_dword(uint32_t *addr, uint32_t value)
{
uint32_t offset = (uint32_t)addr;
if (offset >= EEPROM_SIZE-3) return;
if (!(FTFL->FCNFG & FTFL_FCNFG_EEERDY)) eeprom_initialize();
#ifdef HANDLE_UNALIGNED_WRITES
switch (offset & 3) {
case 0:
#endif
if (*(uint32_t *)(&FlexRAM[offset]) != value) {
*(uint32_t *)(&FlexRAM[offset]) = value;
flexram_wait();
}
return;
#ifdef HANDLE_UNALIGNED_WRITES
case 2:
if (*(uint16_t *)(&FlexRAM[offset]) != value) {
*(uint16_t *)(&FlexRAM[offset]) = value;
flexram_wait();
}
if (*(uint16_t *)(&FlexRAM[offset + 2]) != (value >> 16)) {
*(uint16_t *)(&FlexRAM[offset + 2]) = value >> 16;
flexram_wait();
}
return;
default:
if (FlexRAM[offset] != value) {
FlexRAM[offset] = value;
flexram_wait();
}
if (*(uint16_t *)(&FlexRAM[offset + 1]) != (value >> 8)) {
*(uint16_t *)(&FlexRAM[offset + 1]) = value >> 8;
flexram_wait();
}
if (FlexRAM[offset + 3] != (value >> 24)) {
FlexRAM[offset + 3] = value >> 24;
flexram_wait();
}
}
#endif
}
void eeprom_write_block(const void *buf, void *addr, uint32_t len)
{
uint32_t offset = (uint32_t)addr;
const uint8_t *src = (const uint8_t *)buf;
if (offset >= EEPROM_SIZE) return;
if (!(FTFL->FCNFG & FTFL_FCNFG_EEERDY)) eeprom_initialize();
if (len >= EEPROM_SIZE) len = EEPROM_SIZE;
if (offset + len >= EEPROM_SIZE) len = EEPROM_SIZE - offset;
while (len > 0) {
uint32_t lsb = offset & 3;
if (lsb == 0 && len >= 4) {
// write aligned 32 bits
uint32_t val32;
val32 = *src++;
val32 |= (*src++ << 8);
val32 |= (*src++ << 16);
val32 |= (*src++ << 24);
if (*(uint32_t *)(&FlexRAM[offset]) != val32) {
*(uint32_t *)(&FlexRAM[offset]) = val32;
flexram_wait();
}
offset += 4;
len -= 4;
} else if ((lsb == 0 || lsb == 2) && len >= 2) {
// write aligned 16 bits
uint16_t val16;
val16 = *src++;
val16 |= (*src++ << 8);
if (*(uint16_t *)(&FlexRAM[offset]) != val16) {
*(uint16_t *)(&FlexRAM[offset]) = val16;
flexram_wait();
}
offset += 2;
len -= 2;
} else {
// write 8 bits
uint8_t val8 = *src++;
if (FlexRAM[offset] != val8) {
FlexRAM[offset] = val8;
flexram_wait();
}
offset++;
len--;
}
}
}
/*
void do_flash_cmd(volatile uint8_t *fstat)
{
*fstat = 0x80;
while ((*fstat & 0x80) == 0) ; // wait
}
00000000 <do_flash_cmd>:
0: f06f 037f mvn.w r3, #127 ; 0x7f
4: 7003 strb r3, [r0, #0]
6: 7803 ldrb r3, [r0, #0]
8: f013 0f80 tst.w r3, #128 ; 0x80
c: d0fb beq.n 6 <do_flash_cmd+0x6>
e: 4770 bx lr
*/
#elif defined(KL2x) /* chip selection */
/* Teensy LC (emulated) */
#define SYMVAL(sym) (uint32_t)(((uint8_t *)&(sym)) - ((uint8_t *)0))
extern uint32_t __eeprom_workarea_start__;
extern uint32_t __eeprom_workarea_end__;
#define EEPROM_SIZE 128
static uint32_t flashend = 0;
void eeprom_initialize(void)
{
const uint16_t *p = (uint16_t *)SYMVAL(__eeprom_workarea_start__);
do {
if (*p++ == 0xFFFF) {
flashend = (uint32_t)(p - 2);
return;
}
} while (p < (uint16_t *)SYMVAL(__eeprom_workarea_end__));
flashend = (uint32_t)((uint16_t *)SYMVAL(__eeprom_workarea_end__) - 1);
}
uint8_t eeprom_read_byte(const uint8_t *addr)
{
uint32_t offset = (uint32_t)addr;
const uint16_t *p = (uint16_t *)SYMVAL(__eeprom_workarea_start__);
const uint16_t *end = (const uint16_t *)((uint32_t)flashend);
uint16_t val;
uint8_t data=0xFF;
if (!end) {
eeprom_initialize();
end = (const uint16_t *)((uint32_t)flashend);
}
if (offset < EEPROM_SIZE) {
while (p <= end) {
val = *p++;
if ((val & 255) == offset) data = val >> 8;
}
}
return data;
}
static void flash_write(const uint16_t *code, uint32_t addr, uint32_t data)
{
// with great power comes great responsibility....
uint32_t stat;
*(uint32_t *)&(FTFA->FCCOB3) = 0x06000000 | (addr & 0x00FFFFFC);
*(uint32_t *)&(FTFA->FCCOB7) = data;
__disable_irq();
(*((void (*)(volatile uint8_t *))((uint32_t)code | 1)))(&(FTFA->FSTAT));
__enable_irq();
stat = FTFA->FSTAT & (FTFA_FSTAT_RDCOLERR|FTFA_FSTAT_ACCERR|FTFA_FSTAT_FPVIOL);
if (stat) {
FTFA->FSTAT = stat;
}
MCM->PLACR |= MCM_PLACR_CFCC;
}
void eeprom_write_byte(uint8_t *addr, uint8_t data)
{
uint32_t offset = (uint32_t)addr;
const uint16_t *p, *end = (const uint16_t *)((uint32_t)flashend);
uint32_t i, val, flashaddr;
uint16_t do_flash_cmd[] = {
0x2380, 0x7003, 0x7803, 0xb25b, 0x2b00, 0xdafb, 0x4770};
uint8_t buf[EEPROM_SIZE];
if (offset >= EEPROM_SIZE) return;
if (!end) {
eeprom_initialize();
end = (const uint16_t *)((uint32_t)flashend);
}
if (++end < (uint16_t *)SYMVAL(__eeprom_workarea_end__)) {
val = (data << 8) | offset;
flashaddr = (uint32_t)end;
flashend = flashaddr;
if ((flashaddr & 2) == 0) {
val |= 0xFFFF0000;
} else {
val <<= 16;
val |= 0x0000FFFF;
}
flash_write(do_flash_cmd, flashaddr, val);
} else {
for (i=0; i < EEPROM_SIZE; i++) {
buf[i] = 0xFF;
}
val = 0;
for (p = (uint16_t *)SYMVAL(__eeprom_workarea_start__); p < (uint16_t *)SYMVAL(__eeprom_workarea_end__); p++) {
val = *p;
if ((val & 255) < EEPROM_SIZE) {
buf[val & 255] = val >> 8;
}
}
buf[offset] = data;
for (flashaddr=(uint32_t)(uint16_t *)SYMVAL(__eeprom_workarea_start__); flashaddr < (uint32_t)(uint16_t *)SYMVAL(__eeprom_workarea_end__); flashaddr += 1024) {
*(uint32_t *)&(FTFA->FCCOB3) = 0x09000000 | flashaddr;
__disable_irq();
(*((void (*)(volatile uint8_t *))((uint32_t)do_flash_cmd | 1)))(&(FTFA->FSTAT));
__enable_irq();
val = FTFA->FSTAT & (FTFA_FSTAT_RDCOLERR|FTFA_FSTAT_ACCERR|FTFA_FSTAT_FPVIOL);;
if (val) FTFA->FSTAT = val;
MCM->PLACR |= MCM_PLACR_CFCC;
}
flashaddr=(uint32_t)(uint16_t *)SYMVAL(__eeprom_workarea_start__);
for (i=0; i < EEPROM_SIZE; i++) {
if (buf[i] == 0xFF) continue;
if ((flashaddr & 2) == 0) {
val = (buf[i] << 8) | i;
} else {
val = val | (buf[i] << 24) | (i << 16);
flash_write(do_flash_cmd, flashaddr, val);
}
flashaddr += 2;
}
flashend = flashaddr;
if ((flashaddr & 2)) {
val |= 0xFFFF0000;
flash_write(do_flash_cmd, flashaddr, val);
}
}
}
/*
void do_flash_cmd(volatile uint8_t *fstat)
{
*fstat = 0x80;
while ((*fstat & 0x80) == 0) ; // wait
}
00000000 <do_flash_cmd>:
0: 2380 movs r3, #128 ; 0x80
2: 7003 strb r3, [r0, #0]
4: 7803 ldrb r3, [r0, #0]
6: b25b sxtb r3, r3
8: 2b00 cmp r3, #0
a: dafb bge.n 4 <do_flash_cmd+0x4>
c: 4770 bx lr
*/
uint16_t eeprom_read_word(const uint16_t *addr)
{
const uint8_t *p = (const uint8_t *)addr;
return eeprom_read_byte(p) | (eeprom_read_byte(p+1) << 8);
}
uint32_t eeprom_read_dword(const uint32_t *addr)
{
const uint8_t *p = (const uint8_t *)addr;
return eeprom_read_byte(p) | (eeprom_read_byte(p+1) << 8)
| (eeprom_read_byte(p+2) << 16) | (eeprom_read_byte(p+3) << 24);
}
void eeprom_read_block(void *buf, const void *addr, uint32_t len)
{
const uint8_t *p = (const uint8_t *)addr;
uint8_t *dest = (uint8_t *)buf;
while (len--) {
*dest++ = eeprom_read_byte(p++);
}
}
int eeprom_is_ready(void)
{
return 1;
}
void eeprom_write_word(uint16_t *addr, uint16_t value)
{
uint8_t *p = (uint8_t *)addr;
eeprom_write_byte(p++, value);
eeprom_write_byte(p, value >> 8);
}
void eeprom_write_dword(uint32_t *addr, uint32_t value)
{
uint8_t *p = (uint8_t *)addr;
eeprom_write_byte(p++, value);
eeprom_write_byte(p++, value >> 8);
eeprom_write_byte(p++, value >> 16);
eeprom_write_byte(p, value >> 24);
}
void eeprom_write_block(const void *buf, void *addr, uint32_t len)
{
uint8_t *p = (uint8_t *)addr;
const uint8_t *src = (const uint8_t *)buf;
while (len--) {
eeprom_write_byte(p++, *src++);
}
}
#else
// No EEPROM supported, so emulate it
#define EEPROM_SIZE 32
static uint8_t buffer[EEPROM_SIZE];
uint8_t eeprom_read_byte(const uint8_t *addr) {
uint32_t offset = (uint32_t)addr;
return buffer[offset];
}
void eeprom_write_byte(uint8_t *addr, uint8_t value) {
uint32_t offset = (uint32_t)addr;
buffer[offset] = value;
}
uint16_t eeprom_read_word(const uint16_t *addr) {
const uint8_t *p = (const uint8_t *)addr;
return eeprom_read_byte(p) | (eeprom_read_byte(p+1) << 8);
}
uint32_t eeprom_read_dword(const uint32_t *addr) {
const uint8_t *p = (const uint8_t *)addr;
return eeprom_read_byte(p) | (eeprom_read_byte(p+1) << 8)
| (eeprom_read_byte(p+2) << 16) | (eeprom_read_byte(p+3) << 24);
}
void eeprom_read_block(void *buf, const void *addr, uint32_t len) {
const uint8_t *p = (const uint8_t *)addr;
uint8_t *dest = (uint8_t *)buf;
while (len--) {
*dest++ = eeprom_read_byte(p++);
}
}
void eeprom_write_word(uint16_t *addr, uint16_t value) {
uint8_t *p = (uint8_t *)addr;
eeprom_write_byte(p++, value);
eeprom_write_byte(p, value >> 8);
}
void eeprom_write_dword(uint32_t *addr, uint32_t value) {
uint8_t *p = (uint8_t *)addr;
eeprom_write_byte(p++, value);
eeprom_write_byte(p++, value >> 8);
eeprom_write_byte(p++, value >> 16);
eeprom_write_byte(p, value >> 24);
}
void eeprom_write_block(const void *buf, void *addr, uint32_t len) {
uint8_t *p = (uint8_t *)addr;
const uint8_t *src = (const uint8_t *)buf;
while (len--) {
eeprom_write_byte(p++, *src++);
}
}
#endif /* chip selection */
// The update functions just calls write for now, but could probably be optimized
void eeprom_update_byte(uint8_t *addr, uint8_t value) {
eeprom_write_byte(addr, value);
}
void eeprom_update_word(uint16_t *addr, uint16_t value) {
uint8_t *p = (uint8_t *)addr;
eeprom_write_byte(p++, value);
eeprom_write_byte(p, value >> 8);
}
void eeprom_update_dword(uint32_t *addr, uint32_t value) {
uint8_t *p = (uint8_t *)addr;
eeprom_write_byte(p++, value);
eeprom_write_byte(p++, value >> 8);
eeprom_write_byte(p++, value >> 16);
eeprom_write_byte(p, value >> 24);
}
void eeprom_update_block(const void *buf, void *addr, uint32_t len) {
uint8_t *p = (uint8_t *)addr;
const uint8_t *src = (const uint8_t *)buf;
while (len--) {
eeprom_write_byte(p++, *src++);
}
}