qmk/platforms/chibios/drivers/spi_master.c

418 lines
12 KiB
C

/* Copyright 2020 Nick Brassel (tzarc)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
#include "spi_master.h"
#include "timer.h"
static bool spiStarted = false;
#if SPI_SELECT_MODE == SPI_SELECT_MODE_NONE
static pin_t current_slave_pin = NO_PIN;
static bool current_cs_active_low = true;
#endif
static SPIConfig spiConfig;
static inline void spi_select(void) {
spiSelect(&SPI_DRIVER);
#if SPI_SELECT_MODE == SPI_SELECT_MODE_NONE
if (current_slave_pin != NO_PIN) {
gpio_write_pin(current_slave_pin, current_cs_active_low ? 0 : 1);
}
#endif
}
static inline void spi_unselect(void) {
#if SPI_SELECT_MODE == SPI_SELECT_MODE_NONE
if (current_slave_pin != NO_PIN) {
gpio_write_pin(current_slave_pin, current_cs_active_low ? 1 : 0);
}
#endif
spiUnselect(&SPI_DRIVER);
}
__attribute__((weak)) void spi_init(void) {
static bool is_initialised = false;
if (!is_initialised) {
is_initialised = true;
// Try releasing special pins for a short time
gpio_set_pin_input(SPI_SCK_PIN);
if (SPI_MOSI_PIN != NO_PIN) {
gpio_set_pin_input(SPI_MOSI_PIN);
}
if (SPI_MISO_PIN != NO_PIN) {
gpio_set_pin_input(SPI_MISO_PIN);
}
chThdSleepMilliseconds(10);
#if defined(USE_GPIOV1)
palSetPadMode(PAL_PORT(SPI_SCK_PIN), PAL_PAD(SPI_SCK_PIN), SPI_SCK_PAL_MODE);
if (SPI_MOSI_PIN != NO_PIN) {
palSetPadMode(PAL_PORT(SPI_MOSI_PIN), PAL_PAD(SPI_MOSI_PIN), SPI_MOSI_PAL_MODE);
}
if (SPI_MISO_PIN != NO_PIN) {
palSetPadMode(PAL_PORT(SPI_MISO_PIN), PAL_PAD(SPI_MISO_PIN), SPI_MISO_PAL_MODE);
}
#else
palSetPadMode(PAL_PORT(SPI_SCK_PIN), PAL_PAD(SPI_SCK_PIN), SPI_SCK_FLAGS);
if (SPI_MOSI_PIN != NO_PIN) {
palSetPadMode(PAL_PORT(SPI_MOSI_PIN), PAL_PAD(SPI_MOSI_PIN), SPI_MOSI_FLAGS);
}
if (SPI_MISO_PIN != NO_PIN) {
palSetPadMode(PAL_PORT(SPI_MISO_PIN), PAL_PAD(SPI_MISO_PIN), SPI_MISO_FLAGS);
}
#endif
spiStop(&SPI_DRIVER);
spiStarted = false;
}
}
bool spi_start_extended(spi_start_config_t *start_config) {
#if (SPI_USE_MUTUAL_EXCLUSION == TRUE)
spiAcquireBus(&SPI_DRIVER);
#endif // (SPI_USE_MUTUAL_EXCLUSION == TRUE)
if (spiStarted) {
return false;
}
#if SPI_SELECT_MODE != SPI_SELECT_MODE_NONE
if (start_config->slave_pin == NO_PIN) {
return false;
}
#endif
#if !(defined(WB32F3G71xx) || defined(WB32FQ95xx))
uint16_t roundedDivisor = 2;
while (roundedDivisor < start_config->divisor) {
roundedDivisor <<= 1;
}
# if defined(AT32F415)
if (roundedDivisor < 2 || roundedDivisor > 1024) {
return false;
}
# else
if (roundedDivisor < 2 || roundedDivisor > 256) {
return false;
}
# endif
#endif
#if defined(K20x) || defined(KL2x)
spiConfig.tar0 = SPIx_CTARn_FMSZ(7) | SPIx_CTARn_ASC(1);
if (start_config->lsb_first) {
spiConfig.tar0 |= SPIx_CTARn_LSBFE;
}
switch (start_config->mode) {
case 0:
break;
case 1:
spiConfig.tar0 |= SPIx_CTARn_CPHA;
break;
case 2:
spiConfig.tar0 |= SPIx_CTARn_CPOL;
break;
case 3:
spiConfig.tar0 |= SPIx_CTARn_CPHA | SPIx_CTARn_CPOL;
break;
}
switch (roundedDivisor) {
case 2:
spiConfig.tar0 |= SPIx_CTARn_BR(0);
break;
case 4:
spiConfig.tar0 |= SPIx_CTARn_BR(1);
break;
case 8:
spiConfig.tar0 |= SPIx_CTARn_BR(3);
break;
case 16:
spiConfig.tar0 |= SPIx_CTARn_BR(4);
break;
case 32:
spiConfig.tar0 |= SPIx_CTARn_BR(5);
break;
case 64:
spiConfig.tar0 |= SPIx_CTARn_BR(6);
break;
case 128:
spiConfig.tar0 |= SPIx_CTARn_BR(7);
break;
case 256:
spiConfig.tar0 |= SPIx_CTARn_BR(8);
break;
}
#elif defined(HT32)
spiConfig.cr0 = SPI_CR0_SELOEN;
spiConfig.cr1 = SPI_CR1_MODE | 8; // 8 bits and in master mode
if (start_config->lsb_first) {
spiConfig.cr1 |= SPI_CR1_FIRSTBIT;
}
switch (start_config->mode) {
case 0:
spiConfig.cr1 |= SPI_CR1_FORMAT_MODE0;
break;
case 1:
spiConfig.cr1 |= SPI_CR1_FORMAT_MODE1;
break;
case 2:
spiConfig.cr1 |= SPI_CR1_FORMAT_MODE2;
break;
case 3:
spiConfig.cr1 |= SPI_CR1_FORMAT_MODE3;
break;
}
spiConfig.cpr = (roundedDivisor - 1) >> 1;
#elif defined(WB32F3G71xx) || defined(WB32FQ95xx)
if (!start_config->lsb_first) {
osalDbgAssert(start_config->lsb_first != FALSE, "unsupported lsb_first");
}
if (start_config->divisor < 1) {
return false;
}
spiConfig.SPI_BaudRatePrescaler = (start_config->divisor << 2);
switch (start_config->mode) {
case 0:
spiConfig.SPI_CPHA = SPI_CPHA_1Edge;
spiConfig.SPI_CPOL = SPI_CPOL_Low;
break;
case 1:
spiConfig.SPI_CPHA = SPI_CPHA_2Edge;
spiConfig.SPI_CPOL = SPI_CPOL_Low;
break;
case 2:
spiConfig.SPI_CPHA = SPI_CPHA_1Edge;
spiConfig.SPI_CPOL = SPI_CPOL_High;
break;
case 3:
spiConfig.SPI_CPHA = SPI_CPHA_2Edge;
spiConfig.SPI_CPOL = SPI_CPOL_High;
break;
}
#elif defined(MCU_RP)
if (start_config->lsb_first) {
osalDbgAssert(start_config->lsb_first == false, "RP2040s PrimeCell SPI implementation does not support sending LSB first.");
}
// Motorola frame format and 8bit transfer data size.
spiConfig.SSPCR0 = SPI_SSPCR0_FRF_MOTOROLA | SPI_SSPCR0_DSS_8BIT;
// Serial output clock = (ck_sys or ck_peri) / (SSPCPSR->CPSDVSR * (1 +
// SSPCR0->SCR)). SCR is always set to zero, as QMK SPI API expects the
// passed divisor to be the only value to divide the input clock by.
spiConfig.SSPCPSR = roundedDivisor; // Even number from 2 to 254
switch (start_config->mode) {
case 0:
spiConfig.SSPCR0 &= ~SPI_SSPCR0_SPO; // Clock polarity: low
spiConfig.SSPCR0 &= ~SPI_SSPCR0_SPH; // Clock phase: sample on first edge
break;
case 1:
spiConfig.SSPCR0 &= ~SPI_SSPCR0_SPO; // Clock polarity: low
spiConfig.SSPCR0 |= SPI_SSPCR0_SPH; // Clock phase: sample on second edge transition
break;
case 2:
spiConfig.SSPCR0 |= SPI_SSPCR0_SPO; // Clock polarity: high
spiConfig.SSPCR0 &= ~SPI_SSPCR0_SPH; // Clock phase: sample on first edge
break;
case 3:
spiConfig.SSPCR0 |= SPI_SSPCR0_SPO; // Clock polarity: high
spiConfig.SSPCR0 |= SPI_SSPCR0_SPH; // Clock phase: sample on second edge transition
break;
}
#elif defined(AT32F415)
spiConfig.ctrl1 = 0;
if (lsbFirst) {
spiConfig.ctrl1 |= SPI_CTRL1_LTF;
}
switch (mode) {
case 0:
break;
case 1:
spiConfig.ctrl1 |= SPI_CTRL1_CLKPHA;
break;
case 2:
spiConfig.ctrl1 |= SPI_CTRL1_CLKPOL;
break;
case 3:
spiConfig.ctrl1 |= SPI_CTRL1_CLKPHA | SPI_CTRL1_CLKPOL;
break;
}
switch (roundedDivisor) {
case 2:
break;
case 4:
spiConfig.ctrl1 |= SPI_CTRL1_MDIV_0;
break;
case 8:
spiConfig.ctrl1 |= SPI_CTRL1_MDIV_1;
break;
case 16:
spiConfig.ctrl1 |= SPI_CTRL1_MDIV_1 | SPI_CTRL1_MDIV_0;
break;
case 32:
spiConfig.ctrl1 |= SPI_CTRL1_MDIV_2;
break;
case 64:
spiConfig.ctrl1 |= SPI_CTRL1_MDIV_2 | SPI_CTRL1_MDIV_0;
break;
case 128:
spiConfig.ctrl1 |= SPI_CTRL1_MDIV_2 | SPI_CTRL1_MDIV_1;
break;
case 256:
spiConfig.ctrl1 |= SPI_CTRL1_MDIV_2 | SPI_CTRL1_MDIV_1 | SPI_CTRL1_MDIV_0;
break;
case 512:
spiConfig.ctrl2 |= SPI_CTRL1_MDIV_3;
break;
case 1024:
spiConfig.ctrl2 |= SPI_CTRL1_MDIV_3;
spiConfig.ctrl1 |= SPI_CTRL1_MDIV_0;
break;
}
#else
spiConfig.cr1 = 0;
if (start_config->lsb_first) {
spiConfig.cr1 |= SPI_CR1_LSBFIRST;
}
switch (start_config->mode) {
case 0:
break;
case 1:
spiConfig.cr1 |= SPI_CR1_CPHA;
break;
case 2:
spiConfig.cr1 |= SPI_CR1_CPOL;
break;
case 3:
spiConfig.cr1 |= SPI_CR1_CPHA | SPI_CR1_CPOL;
break;
}
switch (roundedDivisor) {
case 2:
break;
case 4:
spiConfig.cr1 |= SPI_CR1_BR_0;
break;
case 8:
spiConfig.cr1 |= SPI_CR1_BR_1;
break;
case 16:
spiConfig.cr1 |= SPI_CR1_BR_1 | SPI_CR1_BR_0;
break;
case 32:
spiConfig.cr1 |= SPI_CR1_BR_2;
break;
case 64:
spiConfig.cr1 |= SPI_CR1_BR_2 | SPI_CR1_BR_0;
break;
case 128:
spiConfig.cr1 |= SPI_CR1_BR_2 | SPI_CR1_BR_1;
break;
case 256:
spiConfig.cr1 |= SPI_CR1_BR_2 | SPI_CR1_BR_1 | SPI_CR1_BR_0;
break;
}
#endif
spiStarted = true;
#if SPI_SELECT_MODE == SPI_SELECT_MODE_NONE
current_slave_pin = start_config->slave_pin;
current_cs_active_low = start_config->cs_active_low;
#endif
#if SPI_SELECT_MODE == SPI_SELECT_MODE_PAD
spiConfig.ssport = PAL_PORT(start_config->slave_pin);
spiConfig.sspad = PAL_PAD(start_config->slave_pin);
gpio_set_pin_output(start_config->slave_pin);
#elif SPI_SELECT_MODE == SPI_SELECT_MODE_NONE
if (start_config->slave_pin != NO_PIN) {
gpio_set_pin_output(start_config->slave_pin);
}
#else
# error "Unsupported SPI_SELECT_MODE"
#endif
spiStart(&SPI_DRIVER, &spiConfig);
spi_select();
return true;
}
bool spi_start(pin_t slavePin, bool lsbFirst, uint8_t mode, uint16_t divisor) {
spi_start_config_t start_config = {0};
start_config.slave_pin = slavePin;
start_config.lsb_first = lsbFirst;
start_config.mode = mode;
start_config.divisor = divisor;
start_config.cs_active_low = true;
return spi_start_extended(&start_config);
}
spi_status_t spi_write(uint8_t data) {
uint8_t rxData;
spiExchange(&SPI_DRIVER, 1, &data, &rxData);
return rxData;
}
spi_status_t spi_read(void) {
uint8_t data = 0;
spiReceive(&SPI_DRIVER, 1, &data);
return data;
}
spi_status_t spi_transmit(const uint8_t *data, uint16_t length) {
spiSend(&SPI_DRIVER, length, data);
return SPI_STATUS_SUCCESS;
}
spi_status_t spi_receive(uint8_t *data, uint16_t length) {
spiReceive(&SPI_DRIVER, length, data);
return SPI_STATUS_SUCCESS;
}
void spi_stop(void) {
if (spiStarted) {
spi_unselect();
spiStop(&SPI_DRIVER);
spiStarted = false;
}
#if (SPI_USE_MUTUAL_EXCLUSION == TRUE)
spiReleaseBus(&SPI_DRIVER);
#endif // (SPI_USE_MUTUAL_EXCLUSION == TRUE)
}